Energy Harvesting Wireless Strain Networks, Phase I

Completed Technology Project (2012 - 2013)

Project Introduction

Prime Research LC (PPLC) and Virginia Tech (VT) propose to develop an energy harvesting wireless strain node technology that utilizes single-crystal piezoelectric fiber-based energy harvesting, highly sensitive and low power piezoresistive strain gages, and ultra wide-band (UWB) ultra low power radio communication. Single crystal piezoelectric fibers promise to improve piezoelectric harvesting power density by a factor of $4 - 5 \square$ while the ultra wide-band radio (UWB) and piezoresistive strain gages promise to lower power requirements by almost 100x. The proposed Phase I work will demonstrate the technologies critical to successful commercialization of a low cost, mass producible, postage stamp sized wireless strain node. A key result of the Phase I effort will be demonstration of the proposed harvesting and sensing technologies. Demonstration of these two items will remove the most significant hurdles to a successful commercial product. Phase I will provide the data necessary to perform an integrated system design in the Phase I Option and during Phase II, PPLC and VT will fabricate the integrated device for use in field trials.

Primary U.S. Work Locations and Key Partners

Energy Harvesting Wireless Strain Networks, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Energy Harvesting Wireless Strain Networks, Phase I

Completed Technology Project (2012 - 2013)

Organizations Performing Work	Role	Туре	Location
Prime Photonics, LC	Lead Organization	Industry	Blacksburg, Virginia
Armstrong FlightResearch Center(AFRC)	Supporting Organization	NASA Center	Edwards, California
Virginia Polytechnic Institute and State University(VA Tech)	Supporting Organization	Academia	Blacksburg, Virginia

Primary U.S. Work Locations	
California	Virginia

Project Transitions

February 2012: Project Start

February 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138132)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Prime Photonics, LC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

John Coggin

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Energy Harvesting Wireless Strain Networks, Phase I

Completed Technology Project (2012 - 2013)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - ─ TX12.1.6 Materials for Electrical Power Generation, Energy Storage, Power Distribution and Electrical Machines

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

